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Angular momentum fluctuations of the ideal Bose gas in a 
rotating bucket 
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Instituut voor Theoretische Fysica, K U Leuven, Celestijnenlaan ZOOD, B 3001 Leuven, 
Belgium 

Received 10 June 1994, in final form 26 September 1994 

Abstract An equilibrium superRuid is usually modelled by a Bose gas below its transition 
temperature. Here, we compute rigorously the extremal equilibrium states below this transition 
temperature. We compute lhe deviation from normality of the angular momentum fluctuations 
both above and below this transition tempemme. Finally. we compute the distribution functions 
of the angular momentum and its fluctuations. 

1. Introduction 

Blatt and Butler [I] have shown that a rotating ideal Bose gas in three dimensions undergoes 
phase transitions similar to those occumng in rotating He U. Their main result is that the 
total angular momentum J of the gas, considered as a function of the angular velocity w 
of the bucket, increases linearly between a sequence 01,oz. . . . of critical values of o. At 
a critical value of w, the angular momentum jumps by an amount Noh, where No is the 
number of condensed particles. 

Blatt et a1 [Z] considered the rotating bucket model and discussed the question as to 
whether the effective moment of inertia is the same for classical as well as for quantum 
statistical mechanics. By heuristic computations, they showed that this holds above the 
transition point, but not below. 

Lewis and Pul6 [3] made a rigorous study of the free Bose gas in a rotating bucket. 
They treated a grand canonical Bose gas by fixing the average density and the average 
angular momentum. The idea is to compute the generating functional of the representation 
of the cyclic representation of the canonical commutation relations, corresponding to the 
state which is the thermodynamic l i t  of the grand canonical ensemble with fixed density 
and fixed angular momentum. Using this state, they showed that there exists a critical 
density pc above which there is a condensate in the lowest, or the two lowest, energy 
levels, depending on the angular velocity of the system in the thermodynamic limit. These 
computations confirmed the heuristic results of Blaff and Butler [lJ and Putterman eta1 [4J. 

In section 2, we recall the main properties of the model of the rotating bucket as 
described in [3]. We need two of their results. We extend their first in the sense that, for 
p > pc,  we calculate the extremal equilibrium states. In order to achieve this, we add one 
or two extra field terms to the Hamiltonian, a technique already used in [5] and 161. We also 
indicate different, but complementm, ways of calculating this equilibrium state. Loosely 
speaking, one can say that we calculate with test functions, which feel the boundary. In [3], 

t UKW Onderzaeker Belgium. 

0305-1470195/010001c18$19.50 @ 1995 IOP Publishing Ltd 1 



2 P Tuyk er a1 

the state is calculated for functions which do not see the boundary. The precise statement 
can be found in section 2. 

Section 3 contains esscntially the law of large numbers. We prow that for densities 
below the critical density pc. the distribution functions of the average angular momentum 
density and the average particle density are given by a &distribution. For densities higher 
than the critical density however, we rigorously prove that the distribution function of the 
angular momentum corresponding to the state given in [3] is certainly not a S-distribution. 
However, the distribution function of the angular momentum corresponding to the extremal 
state is a S-distribution. This confirms'the fact that the states which we derived are extremal 
equilibrium states. 

In section 4, we introduce the fluctuation of the angular momentum and make precise in 
what sense we take the thermodynamic limit. Since the fluctuation of the angular momentum 
is directly related to the moment of inertia of the system, one expects the fluctuations to 
behave as O(L5). Our computations show indeed this behaviour if p < pc, which is in 
agreement with the heuristic computations of Blatt et a1 [Z]. For > pc, we make the 
external field volume dependent in the sense that it tends to zero with increasing volume, 
i.e. we treat it as a boundary condition and we compute the deviation from normality. 
This is expressed in terms of a parameter which we call the critical exponent. If the field 
vanishes very slowly, the critical exponent is independent of the rate of decay of the field 
and coincides with the exponent for the case of low densities. If the field drops off too 
quickly, the effect of the field terms disappears and the state is no longer extremal. In 
the case where the field vanishes moderately quickly, the critical exponent depends on the 
vanishing rate. The results of this section, without proofs, have already been announced in 
[71. 

The final section contains the proof that the distribution function of the moment of 
inertia of the system is Gaussian. This result is true both below and above the critical 
density and is independent of the boundary condition. 

2. The model 

We follow closely the set-up of Lewis and Puli 131. Let A1 be the cylindrical region of 
unit volume in R3: 

A I  = ( X  E R3 : X: +x :  < U', 1x31 < (2ir~')-') 

and VL > 0, we define 

and let 'HL = L z ( A ~ ) .  Denote by hL  = - Q j L  the one-particle Hamiltonian, a 
self-adjoint operator on X L ,  with Neumann boundary condition on aAL: aq5fan = 0, 
where aq5lan is the normal derivative and A is the Laplacian. The operator j r  = -ia/aO 
represents the angular momentum around the x3-axis. QL can be interpreted as the angular 
velocity of the system. 

In order to describe bosons in a rotating bucket, one considers the Fock space ~ ( ' H L ) .  
Denote by HL and JL the operators on F('H') induced by hL and j L ,  respectively. The 
algebra AL, which describes the system of bosons, is a ccR-algebra, generated by the Fock 
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creation and annihilation operators d(f) and a&), V f ,  g E 'HL [SI. They satisfy the 
foliowing relations: 

a)* = U+(f) [a(f), a+(g)l = (f, g)r  

where (. , . )L  denotes the scalar product in 7-1~ .  The system of free bosons in a rotating 
bucket is now described by the following Hamiltonian: 

where p~ is the chemical potential and NL is the number operator on F('HL). A state is a 
normalized linear functional on the algebra d L .  A state rlL which describes the system in 
thermal equilibrium satisfies the KMS equation 

~ ~ ( A m i f l B )  = V L ( B A )  V A ,  B E d L  (2) 

where q p A  = e-?(HL-WNL)AeB(HL-ILLNL). For finite volumes, the solution of this equation 
is unique and given by the Gibbs state 

where ,9 = l/kT is the inverse temperature. Because algebra d L  is generated by 
(1, u(f), n+(g))  with f, g E EL, the state is completely determined by the correlation 
functions 

for all m , n  E N and f i . g j  E 7-1~ .  These are calculated by means of  the generating 
functional, i.e. the expectation value of the Weyl operators: 

ww = exp + a + ( f ) )  f E E L .  .Jz 
It is a well known fact that this expectation value is of the form 

r l ~ ( W ( f ) )  = $ 8 , ~ 2 ~ . p ~ ( f )  = P d f ) e x p  -$dp,,,,n,(f, f) (4) 

where 

First we determine a suitable basis in 7 - 1 ~ .  Let @k,L : k = 1,2, 3, . . .) be a complete 
orthonormal set in 7 i ~  such that 
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where k stands for the three quantum numbers ( n , l . m )  appropriate to the cylindrical 
geometry. The labels k are such that 

E k , L  - ndk 6 E k + i , L  - n L l k + i .  

@kk.L are given in terms of @k 5 @ k , l  and &.L in terms of as follows 

E k . L  = L-'Ek,I 

where 

@k = KI..All (y) ei'ecos (nza'mx3 + - ,,> 
2 

1 = 0, f l ,  f2,. . . , m = 0,1, '2,. . . , n = 1.2,. . . and rL," is the nth non-negative zero of 
Jb,  in increasing order. Furthermore, 

Ko.0 = 1 

4 . n  = Ill + n  2 1 
2 z a z J ~ ~ ~ ( r r , n ) ~  

and the set of energies is 

= +(a-'rITn -F x4a4m2). 

It is straightforward to rewrite the Hamiltonian in this basis: 

and 

where ak,L a ( @ k , L ) .  One computes the average particle and angular momentum densities 
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One takes the limit L + CO, keeping p and h fixed. Constraints (8) and (9) determine p~ 
and QL as functions of L. 

We remark here that we follow the same point of view as in [IO], where the 
thermodynamic limit is taken keeping the density constant. Here we keep the density, 
as well as the angular momentum density, fixed. 

On the interval [0, I], Vu > 0, let 

The function z -+ (Zag)-3/2g,(z) is continuous on [0,1] and increases monotonically to 
a maximum pe at z = 1, such that for p 6 pc, the equation p = (2~,3)-’/~g,(6) has a 
unique root e(@). We are interested in the limit state 9 = limLAm q ~ .  It is given by the 
following theorem [3] (see also equation (4)). 

Theorem 1. Let D be the space of CY functions on R3 having compact support. Then, 
for each h in D, the quadratic form A 6 , b , ~  is given on 2, by 

if r? 6 P~ 

where 

with 

and 

1 
01 = -(rZ 2a2 1.1 - r1-d for 12 1 .  

For j 4 pc, this state is an extremal equilibrium state in the sense that it cannot 
be decomposed into a non-trivial convex combination of two other states V I ,  t ) ~  that are 
solutions of (Z), i.e. 

11 # h.91 + (1 - h . h  with h. E IO, 1[ and 91 # 92. (10) 
However, if p z p c ,  the state is no longer extremal (see section 4). In order to calculate 
the extremal states, one adds one or two extra field terms to the Hamiltonian. 

Before doing this, we recall another result [3]. Denote n j , L  = azLai,L and define 

These are the lowest energy-level contributions to the average density. Note that because 
of stability, we have EI ,L  - Q L ~ I  - K L  > 0. Denote w ( L )  = L2QL, then we have the 
following theorem [9]. 
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Theorem 2. If f i  < pc, then 

where B ( p )  is the root of the equation 

J = ( z ~ ~ ) - ~ / ~ g ~ , ~ ( e ) .  
~~ 

If r j  > pc, then 
e -KE?-Q~I~-~~)  -+ 1, P )  -+ J - pc 

(i) If, for some I > 0, 

with as defined in theorem 1, then there exists a w' E ]WI ,  OL+I [ such that 

It is clear that for r j  < pc there is no condensation. If /j > ps. in case (i), there is 
condensation only in level 1, as in the ordinary free boson gas. In cases (ii)-(iv), there is 
condensation in both levels 1 and 2. This is because of the degeneracy of the lowest energy 
level when UJ = fa[. In order to compute the extrema1 states, we add one field in case (i) 
and two fields in case (ii). We limit ourselves to the explicit presentation of this latter case, 
because all other cases can be treated in the same way. 
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Lemma I .  For f, g E ~ L L ,  the equilibrium state described by the Hamiltonian 

Hi = H L + ~ E ~ ( ~ ~ ~ + ~ I . L ) + ~ ~ ~ ( ~ ~ + ~ ~ , L )  (15) 

is a quasi-free state [ I l l  with the following one- and two-point functions 

E2& 
s;: (4,) = - 

EZ,L - Q d 2  - PL 

= 0 fork > 2 

and 

where f k . ~  = @ k , L  f), 
Proof. This follows straightforwardly from the KMS condition (2). U 

For the system with external fields, consider again constraint equations (8) and (9). The 
chemical potential p~ now depends on these fields. This is expressed through the notation 
bi. The same holds, of course, for the angular velocity. With this in mind, one obtains the 
following property concerning the joint limit L 3 00, €1 + 0, €2 + 0. 

Lemma 2. Following the scheme of case (ii) from theorem 2, one obtains 

lim lim ( E I , L  - ai11 - p i )  = 0 

lim lim (Ez ,L  - ai12 - P;) = 0 

6-0 L-m 
(0 

r-to L-m 
(ii) 

where w1 and 1 are as before. 

Proof. 
(8) and (9) as 

Relations (i) and (ii) are mvial, (iii) and (iv) become clear if one rewrites constraints 
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Introduce the notation 

Pk,L = (exp(Bh,L) - W. 
Theorem 3. If p > pc, then the extrema1 equilibrium states are given by the following 
generating functional: 

x e M - t  II f 112)ex~(-~AB.4.r(f, f)) 
for all f E V. 

Proof. The explicit proof is given only for case (ii) of theorem 2. By expanding function 
f in the basis {&,L : k = 1,2, ... ) and using the fact that the different k-modes are 
orthogonal, or 

AL EZ @A: (21) 
k 

where the 
generating functional: 

are generated by kzk,L,azL, I), one has the following expression for the 

Applying the translation automorphisms 

ai.L +  ai.^ + ffi 
' 

i = 1.2 
atL .----f a;L + Eri 

where 
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one obtains 

In the limit L + 03, the product over k becomes 

exp-(~l l f l lZ+ ~-4~,~,x(f3 f)). 
Using 

where f is the Fourier bansform of f and formulae (19) and (ZO), the terms with the fields 
yield (because I > 1) (ii) from theorem 2 

exp L-Gi,~Jl(P - ~d - .t ( w a 2 ~ & 2 ( f ( o )  + ?(0))exp-(~llfllZ + 4.&i(f, f)). & 
One can prove analogously cases (i), (iii) and (iv) of theorem 2. Collating this, the generating 
functional for ,5 > pc becomes 

x exp 4: II f 11' +&,5,i(f2 f)). 
Notice that if G = 0, there is no contribution from the condensate to the generating 

functional. This is due to the fact that in the formulation of the theorem, one calculates 
with functions living on a compact support. If, on the other hand, one calculates with 
arbitrary functions f E XL. with an expanding support and then takes the limit L + 03 

as in lemma 2, then the condensate does appear in the expressions. The reason is that if 
the angular momentum is large enough (i.e. 1 > 2), the condensate moves to the boundary 
under the influence of centrifugal forces. This can be made more explicit, e.g. in case (i) 
of theorem 1, the angular momentum is then given by the formula [3] 

h = omaz(p  - pc) + +,a 2 pc. 

The first term represents the angular momentum of a ring with radius a, rotating with an 
angular velocity U, and a particle density ,5 - pc3 while the second term is the angular 
momentum of a cylinder of fluid particles with radius a, rotating at the same speed, with a 
particle density pc. 
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3. Angular momentum distributions 

In this section, we look for the distribution of the average angular momentum 1 and the 
average density ,5. The results give information on whether the limit state )I- = limL+, q-L 
is an extrema1 equilibrium state or not. In fact, we calculate the distribution function of b. 

Theorem 4. Consider system (1) at f i  6 pc,  then 

Proof. By (7) 

implying that q L ( J L )  is of order O(L3). The left. nd I of (22) becomc 

where 6k.L = p k , ~ ( e ~ “ ~ - ” ~  - 1). Next, one uses the bounds 

I In(1 +z) - z [  < lzlz 
leiU - 11’ < 01’ 
P ~ , L  6 Pk,L 

for IZI < 

for all k > 1 

to obtain 

The expression in the bracket is convergent to a finite integral. The supplementary L-’ 
factor makes the whole expression tend to zero, by the dominated convergence theorem. 
By expansion of the exponential exp(isL-’Zk) and using the same argument as above, one 
obtains the result: exp(isi). 0 

Analogously, one shows that the distribution of the average density equals 

in the case ,5 f pc .  Note that this agrees with the result for the free boson gas (see, e.g. 
WI) .  

> pc, and calculate again the distribution in the state 
determined by Hamiltonian (1). The expectation value of the distribution function will not 
be a &distribution. 

Let us now consider the case 
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Theorem 5. If > pc, for case (i) of theorem 2, one obtains 

11 

Proof. We remark that, in this case, there is condensate only in the first level, i.e. 

while 

Using the same technique as in the proof of theorem (4) for equation (23), one obtains 

Using (27) and (28), the first factor becomes, in the limit L + 00, equal to 

1 
1 - isli ( p  - pc)  ' 

The factor exp(- xkm,. ln(1 - E K , L ) )  converges, similarly as in the proof of theorem 4, to 
U 

This is clearly not the Fourier transform of a &distribution, and again &is result is 
similar to the result for the free boson gas [12]. Similarly, one computes the distribution in 
the cases when both levels show condensation. The result is then 

exp(is$oma2pc). This concludes the proof. 

We remark that for theorem 5, we do not have a convenient law of large numbers for the 
angular momentum in the equilibrium state q ~ .  Therefore, we now calculate the distribution 
function of the angular momentum operator for > pc  in the state qE with external fields 
(see lemma 1). We restrict ourselves to case (ii) of theorem 2. We take the fields E; to be 
volume dependent in the following particular way: 

i = 1,2 with a > 0. CL 
' - L3.a 6 .  - - 

The external field plays the role of a boundary condition, it vanishes with increasing volumes. 
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Lemma 3. 
dependence (for i = 1.2): 

For volume-dependent fields the energy gaps have the following volume 

o e e I : ( E ~ , ~  - nLti - F L )  - 0(~-39 
1 G a : ( E ~ , ~  - nLli - P L )  - 0 ( ~ - 3 ) .  

Proof. For 0 c a c 1, by lemma 1, if one has two-fold degeneracy of the grand canonical- 
state spectrum of HL - W L N L ,  then 

c: + c2” 
L ~ = ( E ~ , ~  - QLll  - pL)2  L6a(EI,L - Q L I 1  - / L ~ ) ~  

Hence, 

The statement of the theorem follows immediately from the fact that the average density is 
kept fixed. Note that the contribution to 5 - pc comes from the first two terms. If 01 > 1, 

0 only the last term contributes and, therefore, (Ei,r. - Q ~ l i  - P L )  - O(L”). 

In order to calculate the distribution function, we need the following lemma. 

Lemma 4. For k = 1,2 

TI (.“(k, L)exp ( $ j k , L > )  = exp(isbf(k)) 

where 

f(1) = x - ;w!a2p, - ( I  - ])(,I? - pc) 

f (2) = 

= C L / L ~ ~ .  0 e a e 1. 

- P.) + ;wia2pc - i 

and 

Proof. 
proof of theorem 3 (using the same definition for at), then one obtains for the trace 

In order to compute the trace, apply again the translation automorphism, as in the 

Defining 
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one has the following differential equation for U((): 

The solution of this equation, evaluated at t = 1, is given by 

Using in (30) 

one obtains for the trace 

After taking the limit L + CO, one obtains (using lemma 3) lemma 4. 0 

Theorem 6. If ,E > pc, then, for the state q> (lemma I), 

Proof. We write down the proof explicitly only for case (ii) of theorem 2. 

Using the previous lemma yields 

= exp(isl(1- fwIu2p, - ( I  - I ) ( p  - p,))) 
L-bCC 

x exp(is[(l- I ) ( L ( ~  - pc) + $wIa2p, - i) + $w,a2pc] = expcisi). 

This theorem constitutes our most striking result of this section. One remarks that even 
at high densities ,3 > pc, the distribution of the average angular momentum in the extremal 
equilibrium states is still a point distribution. This indicates that OUT technique of working 
with a two-mode external field lifts the degeneracy of the ground-state levels. It indicates 
also that the extremal or ergodic equilibrium states, computed in theorem 3, are the grand 
canonical states in which one should compute the angular momentum fluctuations. This is 
achieved in the next section. 
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4. Angular momentum fluctuations 

In this section, the aim is to find the critical exponents of the angular momentum 
susceptibility. We calculate the fluctuation of the angular momentum in a special way; 
we simultaneously take the limit, tending to infinity, of the size of the system together with 
the number of random variables. To be precise. let be a sequence of finite volume 
KMS states, such that limL,,wr. = wm is an ergodic equilibrium state. Then, for any local 
observable A, we look for the parameter 6 E] - i, i[ for which the following variance is 
non-trivial: 

The critical exponent 6 indicates at which level the fluctuations appear, i.e. 6 is a measure 
for the deviation from the standard square root of the mathematically-normal fluctuation. 
For translationally-invariant operators, 6 = 0 indicates the normal situation, the fluctuations 
are then called normal. If 6 > 0, one speaks about abnormal fluctuations; if 6 < 0 then 
Fs(A) is called a subnormal [squeezed) critical fluctuation. In our case, we have to take 
for A the angular momentum J ,  i.e. 

( J L  - XL3). 1 
Fa(J)  = lim - 

L-m L3‘i+6’ 

As we shall show, the physically normal situation for the angular momentum J is 6 = 4. 
This is because of the fact that the angular momentum is not a translationally-invariant 
operator. The result agrees with an equivalent result for the interacting Bose gas under 
suitable cluster conditions, e.g. at very high temperatures 1131. The 6 = 4 is also related to 
the fact that the angular momentum fluctuations are connected to the moment of inertia of 
the system in the following way. The moment of inertia is defined as the derivative of the 
angular momentum with respect to the circular velocity: 

where, of course, 

Tr(e-@(H-R’) J )  

( J )  = Tr(e-B(H-nJ)) ’ 

Clearly, 

I = B ( ( J ’ )  - (J)’ln=o) 

Up to a volume-dependent factor, this is the angular momentum fluctuation variance and, 
in the thermodynamic limit, one indeed obtains IimL-,- S ~ L  = 0. This is the heuristic 
argument for why the variance of the angular momentum fluctuation is proportional to the 
moment of inertia. 

First we compute the value of S at low densities. 

Theorem 7. If p c pc, then 6 = f .  
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Proof. Compute using lemma 1 

Because r1." > 111 + n - 2, for Ill + n > 2 [3], one obtains the following upper bound for 
this sum (we omit the terms 111 + n ,< 2): 

where k = (n, 1 ,  m) and 

Hence, up to some constant terms which do not diverge because of the absence of a 
condensate, the fluctuation is bounded by an expression of the following form: 

Putting 8 = 4, one obtains 

where [XI denotes the integral part of the number x E B. By the dominated convergence 
theorem, this sum converges to an integral expression which is non-trivial. This proves that 
S should be equal to 4 in order to have a finite non-trivial variance (27) for the explicit 
case (28). 0 

Now we turn to the more interesting region of high densities 

Theorem 8. If 6 > pc, then one obtains 

6 = may [ j, ?}  
a = $  i f a > 1  

if 0 < OL < 1 

for the limit extrema1 equilibrium states limLdm q i  with ei = Ci/L3u 

Proof: 
obtains 

We consider again explicitly only case (ii) of theorem 2. Using lemma 1, one 

Suppose first that 0 < (Y < 1. The expression splits into two parts. The terms with k 3 
behave as O(L5), as shown in the previous theorem. The first two terms, according to 
lemma 3, behave as O(L3+3cl). Combining these two results, we see that S = may[$, I] 
satisfies criterion (32). 

If OL 1, we-know from lemma 3 that the first two terms behave as O(L6), hence 
s=I 2' - 0 
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From the proof of this theorem, it is clear that if CY z I ,  the contribution to the angular 
momentum susceptibility comes only from the levels which show condensate. It is in this 
region that the effect of the external field is strong enough to influence the fluctuations; 
(Y = 3 is the point where the moment of inertia of the system is completely determined by 
the condensate sitting at the boundary of the cylinder. 

The result of this theorem is somewhat surprising. One understands that if the external 
field drops off very quickly, i.e. for CY 2 1, then the system behaves as if there is no field 
and 6 = 1 which corresponds to the case of a mixed state, i.e. a convex combination of 
extremal equilibrium states. In the free boson gas, we are in this situation. Below the 
transition point, for high densities, the equilibrium state is the integral over the equilibrium 
states with fixed gauge. Hence, for (Y 2 1, one expects the same properties as for the full 
Gibbs state. 

When CY is smaller, one expects to look at the intrinsic properties of the equilibrium 
states which are situated in the gauge-breaking extremal states. Also, the study of the 
deviation from normality of the angular momentum fluctuation should refer to these gauge- 
breaking states. This is exactly what we expect to find for (Y < 1. The theorem states 
that the parameter 6 depends on the boundq condition, i.e. on CY. This phenomenon has 
already been found in other models [5,6,14] as well as quantum and classical models. 
Here this effect is only seen in the range 1 < CY < 1. However, if (Y < $, or the external 
field vanishes very slowly, then the field forces the system into an extremal phase, with an 
angular momentum distribution which is Gaussian (see section 5 )  and physically normal or 
classical, i.e. the superfluid region does not show any peculiar quantum effect, i.e. 6 = 4, the 
same value as in the low density region ,5 < pc (see theorem 7). Hence, the non-classical 
behaviour appears only if f < CY < 1 and it is determined by the boundary condition. This 
is surprising for a model describing superfluidity. 

5. Fluctuation distributions 

In this final section, we look for the distributions of the fluctuations of the angular momentum 
and prove that they are Gaussian in all circumstances, i.e. for high as well as for low 
densities, and for all values of the average angular momentum. 

Theorem 9. If p < pc, then 6 = f and 

Proof: Using the same technique as in the proof of theorem 4, one obtains 

Again, on the basis of the bounds used there, the linear term disappears due to constraint 
(9) and only the quadratic term survives. One obtains 
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Theorem IO. If > pc and 0 < cr < 1 then, with S as in theorem 8, one again obtains 

Proof. We perform the calculation explicitly for case (ii) of theorem 2. We remind 
ourselves that 

for i = 1,2.  Ci 
' - L3a 

6 .  ,- - 

The distribution function equals 

CC 

x ~ T F ( D ( ~ ,  L )  exp(- is~-~(i+ ' )~L)) .  
k=3 

Using the same technique as in lemma-4, the first trace becomes 

where 

If cr < :, this expression tends to one in the limit L --f 00, as can be seen by using 
lemma 3. Hence, in this case, the distribution function equals 

If, however, a > $ then, by slightly modifgiing the proof of lemma 4, one obtains 

Looking at the proof of theorem 8, one sees that in thelimit L + 00, the exponent exactly 
equals the contribution to the fluctuation, givihg for the distribution 
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